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As an organism interacts with the world, how good or bad things are at the moment, the value of the current state of the organism, is an
important parameter that is likely to be encoded in the brain. As the environment changes and new stimuli appear, estimates of state value
must be updated to support appropriate responses and learning. Indeed, many models of reinforcement learning posit representations
of state value. We examined how the brain mediates this process by recording amygdala neural activity while monkeys performed a
trace-conditioning task requiring fixation. The presentation of different stimuli induced state transitions; these stimuli included uncon-
ditioned stimuli (USs) (liquid rewards and aversive air puffs), newly learned reinforcement-predictive visual stimuli [conditioned stimuli
(CSs)], and familiar stimuli long associated with reinforcement [fixation point (FP)]. The FP had a positive value to monkeys, because
they chose to foveate it to initiate trials. Different populations of amygdala neurons tracked the positive or negative value of the current
state, regardless of whether state transitions were caused by the FP, CSs, or USs. Positive value-coding neurons increased their firing
during the fixation interval and fired more strongly after rewarded CSs and rewards than after punished CSs and air puffs. Negative
value-coding neurons did the opposite, decreasing their firing during the fixation interval and firing more strongly after punished CSs
and air puffs than after rewarded CSs and rewards. This representation of state value could underlie how the amygdala helps coordinate
cognitive, emotional, and behavioral responses depending on the value of one’s state.
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Introduction
A common question in our daily lives is, “How are you?” This
question assumes that we can evaluate our current situation, or
“state.” Am I happy or sad? Thirsty or satiated? Is a reward com-
ing, or is danger lurking? The concept of current state incorpo-
rates these features and more, and reinforcement learning theo-
rists often define the concept of state broadly, as a combination of
internal and external processes, stimuli, and events (Sutton and
Barto, 1998; Dayan and Abbott, 2001).

When animals encounter stimuli in the environment, they
often undergo changes in state. Some stimuli directly cause un-
pleasant or rewarding sensations; other stimuli predict future
pleasant or aversive stimuli. Cognitive, behavioral, and physio-

logical responses depend on how a state relates to current and
future reinforcement, i.e., the state value. To promote survival,
organisms should track state value to choose the best course of
action and improve future assessments of state value to accurately
predict reinforcement.

The value of states can be controlled through classical condi-
tioning paradigms, in which subjects learn that rewarding or
punishing unconditioned stimuli (USs) follow initially neutral
conditioned stimuli (CSs) (Pavlov, 1927; Dickinson and Mack-
intosh, 1978). The amygdala receives inputs from multiple sen-
sory systems carrying information about CSs and USs (Amaral et
al., 1992; McDonald, 1998; Stefanacci and Amaral, 2002) and
mediates learning about the relationship between environmental
cues and reinforcement (LeDoux, 2000; Everitt et al., 2003; Bal-
leine and Killcross, 2006; Paton et al., 2006; Belova et al., 2007). In
primate amygdala, different populations of neurons are involved
in learning the association between conditioned visual stimuli
and rewards or punishments (Paton et al., 2006). We have shown
previously that one population of neurons fires more to stimuli
paired with liquid reward (positive “value-coding” cells), and
another population of neurons fires more to images paired with
air puff (negative “value-coding” cells) (Paton et al., 2006).

Here we determined whether amygdala neurons encode value
in relation to sensory events that can induce transitions to differ-
ent states. Monkeys performed a trace-conditioning task in
which three novel CSs were paired with one of three USs: large
liquid reward, small liquid reward, or aversive air puff. Three
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types of stimuli were presented: a fixation point (FP) that mon-
keys looked at to initiate trials; the three visual CSs; and three USs,
which differed in sensory modality and valence. If a stimulus
elicited approach or defensive behavior, we operationally defined
it as causing a transition to a state with positive or negative value,
respectively. We asked whether amygdala neurons reflect the
value of states induced by such sensory events. For this to be true,
amygdala neurons must (1) encode value in relation to each sen-
sory event (FP, CS, and US), and (2) integrate information about
value across sensory modalities. Evidence that neurons integrate
value information across sensory modalities could be obtained by
examining the response profile of neurons responding most
strongly to a CS when it is associated with aversive air puff. If
these neurons also respond differentially to CSs associated with
different magnitudes of rewards, it would suggest that these neu-
rons encode the association between a CS and the value of USs, in
which USs can differ in valence and sensory modality. Overall,
the ability to track value in time across sensory stimuli, even when
these stimuli differ in valence and modality, could indicate that
amygdala neural activity reflects the value of an organism’s over-
all state.

Materials and Methods
Experimental paradigm and data collection
Our general methods for experimental control and electrophysiological
recording in rhesus monkeys have been described previously (Paton et
al., 2006). Monkeys sat in a Plexiglas primate chair (Crist Instruments)
with their eyes 57 cm in front of a 21 inch Sony cathode ray tube monitor.
Experimenters observed monkeys during experiments using a video
camera feed. All animal procedures conformed to National Institutes of
Health guidelines and were approved by the Institutional Animal Care
and Use Committees at New York State Psychiatric Institute and Colum-
bia University.

Trace-conditioning task. Monkeys learned the reinforcement value of
three novel abstract images (fractal patterns) in each experiment through
a trace-conditioning procedure in which each CS was associated with a
large reward, a small reward, or a punishment. In each trial, monkeys
foveated a central fixation point, held fixation for 1 s (fixation window,
3.5° radius), and continued fixating while an image was presented for 300
ms. We measured eye position with an infrared eye tracker (240 Hz
sampling rate ; Applied Science Laboratories). Images typically occupied
an 8° square centered over the fovea. After image offset, fixation was no
longer required, and a 1.5 s trace interval ensued, followed by reinforce-
ment on 80% of trials, selected randomly. On reinforced trials, we deliv-
ered a large reward (two or three drops of water, 0.4 –2.1 ml, depending
on the monkey), a small reward (one drop of water, 0.2– 0.7 ml), or an
aversive air puff (50 –100 ms, 40 – 60 psi) directed at the face, for strong
positive, weak positive, or negative trials, respectively. All three trial types
were presented in blockwise randomized order (two trials of each type
per block, with trial types randomized within blocks) and separated by a
3.5 s intertrial interval. After monkeys learned the initial value of each
image, we reversed image value assignments without warning, usually
after 30 – 60 trials of each condition. During reversal, the initially strong
positive image was followed by air puff, and the initially negative image
was followed by a large reward. The weak positive image was never
reversed.

Behavioral measures of learning. We assessed monkeys’ anticipatory
licking and blinking to determine whether they had learned CS–US as-
sociations (Paton et al., 2006). For licking, we placed the reward delivery
tube �1 cm away from the monkey’s mouth and measured whether the
monkey’s tongue interrupted an infrared beam passing between the
monkey’s mouth and the reward delivery tube (1000 Hz sampling rate).
We measured anticipatory blinking using an infrared eye tracker, which
provided a characteristic voltage signal when the eye was closed. The
presence of this signal corresponded to eye closures as visualized from a
low-light camera.

Electrophysiological recordings. We recorded neural activity from 145

neurons in the right amygdala of three rhesus monkeys (Macaca mulatta)
weighing 5–10 kg (monkey V, 70 neurons; monkey P, 38 neurons; mon-
key L, 37 neurons). Based on magnetic resonance imaging (MRI), we
positioned recording chambers directly over the amygdala. In each ex-
periment, using a motorized multielectrode drive (NAN Instruments),
we individually advanced four epoxylite-insulated tungsten microelec-
trodes (FHC Inc.) into the brain through dura-puncturing guide tubes
positioned within a rigid grid of guide holes. Grids had holes spaced at 1.3
mm. Each guide tube had four inner guide tubes such that four electrodes
could be advanced and independently controlled through the larger
guide tube. We used the Plexon system for signal amplification, filtering,
digitizing of spike waveforms, spike sorting using a principal component
analysis platform (on-line with off-line verification), and data storage.
Monkeys either performed a fixation task or no task during the search for
well isolated neurons. We included all well isolated neurons in this study.

Reconstruction of recording sites. The localization of the amygdala in
each monkey was achieved using MRI. Each monkey was anesthetized
with isoflurane, intubated, and imaged in a 1.5 Tesla research magnet in
the Columbia University Department of Radiology. We imaged with an
electrode inserted in a grid hole in the chamber and directed toward the
amygdala. For reconstructing recording sites, we used a two-dimensional
inversion recovery (IR) sequence, with 2-mm-thick slices and 0 intergap
spacing and 0.234 � 0.468 mm within-slice resolution. These images
were used to reconstruct the borders of the amygdala and recording sites.
All recordings occurred primarily in the basolateral and central nuclei of
the amygdala, in overlapping regions in all three monkeys.

Data analysis
Population analysis of monkeys’ behavior (licking and blinking). To con-
struct population-average licking and blinking curves, we first assigned a
1 or 0 to each sampled time bin within each trial based on whether the
monkey licked (blinked) or did not lick (did not blink) in that bin. We
averaged the monkey’s responses across trials within each experiment
and then averaged across experiments. Each monkey demonstrated
graded licking behavior and differential blinking behavior.

Population-level peristimulus time histograms of neural activity. Peris-
timulus time histograms (PSTHs) were sampled in 10 ms nonoverlap-
ping bins and convolved with a 50 ms at half-width Gaussian kernel for
display purposes. Because on average monkeys learn CS–US associations
within five or fewer trials, we removed the first four trials from initial and
reversal learning sessions in each experiment for the PSTHs shown in
Figures 2 and 4.

Receiver operating characteristic analyses. We used a receiver operating
characteristic (ROC) analysis adapted from signal-detection theory
(Green and Swets, 1966; Paton et al., 2006) for the following analyses.

Classification of cells as value coding. To classify a cell as encoding the
value of conditioned images, we first defined two intervals: the visual
stimulus (CS) and trace intervals (90 –390 ms after CS onset and from
390 ms after CS onset until US onset, respectively) (Paton et al., 2006). If
neural responses to images that underwent reversal during either (or
both) the visual stimulus or trace intervals changed significantly and in
opposite directions, the cell was classified as encoding value. Statistical
significance was established by using an ROC analysis comparing activity
in the 20 trials before and after reversal for both images; ROC values
significantly different from 0.5 for both images ( p � 0.05, permutation
test with 1000 permutations, after Bonferroni’s correction) were used as
our statistical criterion. Neurons were classified as encoding positive or
negative value when both ROC values were greater or less than 0.5, indi-
cating that cells responded more strongly to images associated with re-
wards (positive value) or air puffs (negative value), respectively. For
subsequent analyses (described below), we used the interval (visual stim-
ulus or trace) in which value coding was strongest (ROC values most
different from 0.5).

Analysis of graded CS and US neural responses. To assess whether a cell
that passed the test described above (see Classification of cells as value
coding) encoded value during the CS or trace interval in a graded man-
ner, we used an ROC analysis to construct two neural discrimination
indices (NDIs) for CSs; the two NDIs compare activity on weak positive
trials with strong positive trials (positive NDI) and to negative trials
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(negative NDI) respectively. Analogous NDIs for US responses were con-
structed by comparing activity during the reinforcement epoch 50 – 600
ms after US offset on the same types of trials as for the CS NDIs.

Analysis of graded behavior. Analogous to our analysis of neural data,
we constructed behavioral discrimination indices (BDIs) using an ROC
analysis of licking or blinking on weak positive trials compared with
strong positive trials (positive BDI) or to negative trials (negative BDI).
These comparisons used licking and blinking responses quantified as the
amount of time spent licking or blinking during the last 500 ms of the
trace interval. The positive BDI based on blinking is not shown because it
was typically not different from 0.5, as blinking rarely occurred on re-
warded trials.

Classification of responses during the fixation interval. To classify neural
responses during the fixation interval as increasing or decreasing, for
every neuron we compared activity in the 500 ms before FP onset with
activity in the 500 ms after FP onset and with activity 500 –1000 ms after
FP onset, using a Wilcoxon’s test ( p � 0.05 after correction for multiple
comparisons). If a neuron passed either test or both tests with a similar
direction of response, we classified it as either excitatory or inhibitory.
We used these two tests because some neurons had gradual buildup
responses, other neurons had sharp-onset phasic responses, and yet
other neurons had sharp-onset sustained responses.

Results
During these experiments, monkeys performed a trace-
conditioning task (Fig. 1A) (see Materials and Methods). To as-
say learning during conditioning, we measured two behaviors
during the trace interval of the conditioning procedure: anticipa-
tory licking and blinking. Licking behavior indicated that mon-
keys discriminated among conditioned visual stimuli in a graded
manner (Fig. 1B): they licked most on large reward trials, less on
small reward trials, and almost not at all on negative trials. Blink-

ing behavior indicated that monkeys
learned to predict air puff (Fig. 1C).

To test whether amygdala activity pro-
vides a neural correlate of state value,
tracking value consistently across the se-
quential presentation of multiple stimuli,
we recorded activity from 145 neurons in
three monkeys during performance of the
trace-conditioning task. We focus first on
neural activity during the fixation interval,
before CS onset. The FP was an over-
trained, positively valued stimulus, be-
cause monkeys had learned that centering
gaze on the FP can lead to reward from the
beginning of their training. Indeed, the
fact that monkeys looked at the FP to begin
a trial (an approach behavior) indicated
that the FP had a positive value to our
monkeys. Within these experiments, the
FP was associated with reward on two-
thirds of all reinforced trials (large and
small reward trials). In contrast to FP
value, CS value varied within an experi-
ment, which was attributable to the differ-
ent CSs used and to the reversal of contin-
gencies within the task (see Materials and
Methods).

We examined responses during the fix-
ation interval separately in two popula-
tions of neurons: those that responded
most strongly to either CSs associated with
large rewards or CSs associated with aver-
sive air puffs (defined as positive and neg-
ative value-coding neurons, respectively).

Neurons were classified as encoding positive or negative value by
comparing the responses to CSs paired with large rewards with
responses to the same CSs when they were paired with air puffs.
We used a ROC analysis to evaluate activity from the 20 trials
before and after CS–US contingency reversal and assessed statis-
tical significance with a permutation test (Paton et al., 2006). If
both CSs elicited significantly higher activity when they were as-
sociated with either reward or punishment (in either the CS or
trace interval, p � 0.05 after Bonferroni’s correction), we desig-
nated the cell as encoding positive or negative value, respectively.
Seventy of 145 neurons (48%) met these criteria: 47 cells fired
more strongly on large reward trials (positive value-coding cells),
and 23 cells fired more strongly on air-puff trials (negative value-
coding cells). The proportion of positive and negative value-
coding cells did not vary significantly across monkeys (� 2 test,
p � 0.05) (Table 1).

Neural responses during the fixation interval differed in pos-
itive and negative value-coding neurons. Given that monkeys
positively value the FP, if neurons encode state value, then posi-
tive value-coding cells should tend to increase their firing during
the fixation interval, and negative value-coding cells should tend
to decrease their firing. Individual amygdala neurons that exem-
plify these response profiles are shown in Figure 2, A (a positive
value-coding cell) and B (a negative value-coding cell). Overall,
30 of 47 positive value-coding neurons significantly increased
their firing rate during the fixation interval, eight cells decreased
their firing rate, and nine cells did not change their level of activity
(Fig. 2D) (Wilcoxon’s test, p � 0.05). Among the 23 negative
value-coding cells, 14 significantly decreased their firing rate after

Figure 1. Experimental paradigm and monkey behavior. A, Trace-conditioning task. Sequence of events for the strong posi-
tive, weak positive, and negative trial types. After monkeys learn the initial CS–US relationships, positive and negative trial types
are reversed, such that the strong positive image becomes negative and the negative image becomes strongly positive. Weak
positive images do not undergo reversal. Reinforcement occurs with a 80% probability on all trial types. B, C, Mean probability of
a response across experiments, for anticipatory licking (B) and blinking (C), before reinforcement delivery as a function of time
within trials.
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FP presentation, three increased their firing rate, and the remain-
ing six had no change in activity (Fig. 2D) (Wilcoxon’s test, p �
0.05). Thus, at a rate significantly greater than chance, positive
value-coding neurons increase firing during the fixation interval
and negative value-coding cells decrease firing (� 2 test, p �
10�5). This � 2 test was also highly significant if we only consid-
ered neurons with sharp increases or decreases in responses to the
FP (positive value-coding neurons: 23 of 30 neurons with in-
creased firing rate during the fixation interval had a sharp onset
increase in firing, and 7 of 8 neurons with decreased firing had a
sharp onset decrease; negative value-coding neurons, 9 of 14 neu-
rons with a decrease in firing during the fixation interval had a
sharp onset decrease and 3 of 3 neurons with increased firing had
a sharp onset increase; � 2 test, p � 10�5). In contrast, in non-
value-coding neurons, increases, decreases, and no change in ac-
tivity after FP appearance occurred with statistically indistin-
guishable probabilities (� 2 test, p � 0.67) (Fig. 2D). On average,
across each population, positive value-coding neurons increased
firing during the fixation interval, negative value-coding cells de-

creased their firing, and non-value-coding cells showed a very
weak, transient increase in response (Fig. 2C). These data suggest
that amygdala neurons may track the value of states across mul-
tiple events during the trial, including FP and CS presentation.

The fact that positive, negative, and non-value-coding neu-
rons respond differently to the fixation point was not attributable
to a difference in firing on rewarded compared with punished
trials, because responses did not differ across trial types. Indeed,
the mean response during the fixation interval on rewarded com-
pared with punished trials was highly correlated across cells
(slope of linear fit, 1.0; r � 0.99; p � 10�10). This is consistent
with the fact that monkeys did not know which CS to expect
during the fixation interval before CS onset. In addition, fixation
interval activity on trials before and after CS–US reversal were
highly correlated (slope of linear fit, 0.94; r � 0.99; p � 10�10),
ruling out the possibility that the differential responses during the
fixation interval could be accounted for by different responses
during initial and reversal learning.

Neural responses during the fixation interval also do not ap-
pear to be related to the uncertainty of reinforcement; unpredict-
ability has been shown to modulate amygdala responses to stim-
uli (Belova et al., 2007; Herry et al., 2007; Whalen, 2007).
Essentially, the fixation point appearance indicated the onset of a
trial in which, on average, trials had a 0.53 probability of reward
(half of which were large reward trials and half small reward
trials), a 0.27 probability of punishment, and a 0.20 probability of
no reinforcement. Uncertainty decreased after CS appearance,
when a large reward, small reward, or punishment was specified,
each occurring with a probability of 0.8. If neurons encode un-
certainty in a monotonically increasing manner, responses
should decrease during the CS interval compared with during the
fixation interval. However, on average, positive value-coding
neurons increase their firing compared with the fixation interval
after a rewarded CS appears (mean increase, 5.12 spikes/s; p �
0.001, t test) and decrease their firing after a punished CS appears
(mean decrease, 4.53 spikes/s; p � 0.01, t test) (Fig. 3A). In con-
trast, negative value-coding neurons do the opposite, decreasing
their firing after rewarded CSs compared with fixation interval
responses (mean decrease, 2.95 spikes/s; p � 0.05, t test) and
increasing their firing after punished CSs appear (mean increase,
3.61 spikes/s; p � 0.05, t test) (Fig. 3B). Overall, therefore, neural
activity does not appear to be correlated with reinforcement
uncertainty.

Within the context of the trace-conditioning task, the value of
the state initiated by CS presentation may simply be determined
by the value of the US associated with that CS, i.e., the predictive
value of the CS. Can neural responses to CSs therefore be de-
scribed as encoding the value of the associated USs? If this is the
case, then responses to CSs associated with small rewards should
consistently be intermediate to responses to those associated with
large rewards or punishments. Figure 4A–D displays PSTHs of
single neurons that demonstrate this response property. In these

Table 1. Cells per category, as a function of monkey

Monkey V Monkey P Monkey L

Positive value-coding cells 25 (36%) 9 (24%) 13 (35%)
Negative value-coding cells 10 (14%) 6 (16%) 7 (19%)
Cells not encoding value 35 (50%) 23 (60%) 17 (46%)
Value-coding cells discriminating among all 3 trial types 22 (31%) 7 (18%) 14 (38%)
Value-coding cells discriminating among large and small reward trials only 6 (9%) 3 (8%) 0 (0%)
Value-coding cells discriminating among small reward and air-puff trials only 7 (10%) 5 (13%) 6 (16%)
Total number of cells 70 38 37

Figure 2. Amygdala neurons encode the value of states initiated by FP presentation. A, B,
PSTHs showing two example amygdala neurons, one encoding positive CS value and increasing
firing rate during fixation point presentation (A), and the other encoding negative CS value and
exhibiting a decrease in firing to the fixation point (B). C, Population average of responses to
fixation point for neurons encoding positive or negative CS value and for neurons not encoding
CS value. Shaded areas indicate SEM. D, Bar chart showing the percentage of cells with increases
(blue), decreases (red), and no change (black) in response level during fixation point presenta-
tion, for positive, negative, and non-value-coding neurons. The number of cells of each type is
indicated. The majority of positive value-coding cells increases firing to the FP, and the majority
of negative value-coding cells decreases firing to the FP. Non-value-coding cells have no dis-
cernable pattern in firing to the FP, with increases, decreases, and no change in responses to the
FP occurring with approximately equal frequency.
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and the following PSTHs, we combined only postlearning trials
to remove the effect of trials when monkeys had not yet learned
the CS–US associations. The neurons shown in Figure 4, A and C,
fire at a high rate on large reward trials, a low rate on punished
trials, and an intermediate rate on small reward trials. In contrast,
the neurons displayed in Figure 4, B and D, show a graded re-
sponse pattern in reverse order: they fire most strongly on pun-
ished trials, least strongly on large reward trials, and again inter-
mediately on small reward trials.

We next sought to quantify the degree to which neural re-
sponses to weak positive CSs were consistently intermediate to
the other two CSs. By definition, all 70 value-coding cells fired
differentially on large reward and air-puff trials. To characterize
the responses to small reward trials compared with the other two
trial types, we used ROC analyses to compute two NDIs. One
index quantified the difference in responses to CSs on large and
small reward trials (positive NDI for CSs). The other index quan-

tified the difference between responses to
CSs on small reward and air-puff trials
(negative NDI for CSs). Figure 4E plots
these two indices against each other. The
vast majority of positive value-coding cells
fall into the top right quadrant of the plot,
whereas the majority of negative value-
coding cells fall into the bottom left quad-
rant. The preferential distribution of neu-
rons into these two quadrants, as opposed
to being randomly distributed in all quad-
rants, was statistically significant ( p �
0.005, � 2 test). Thus, neural responses on
small reward trials tend to fall between re-
sponses on large reward trials and negative
trials in both positive and negative value-
coding neurons. Encoding of value in in-
dividual amygdala neurons, therefore, can
be described as a graded representation
that spans positive and negative valences.

Of particular importance, negative
value-coding neurons, which responded
most strongly when a CS predicted an air
puff, often responded differentially to CSs
associated with different amounts of liquid
reward. These amygdala neurons therefore
did not simply represent the association of
the CS with the sensory properties of a pre-
ferred US (in this case, the air puff). In-
stead, the responses to the three CSs re-
flected an integration of information
about multiple reinforcers with different
sensory properties. This response profile,
therefore, may be best described as repre-
senting the association between the CS and
the value of the corresponding US, in
which USs can differ in sensory modality,
valence, and magnitude.

To gain insight into the anatomical lo-
cation of these amygdala neurons, we re-
constructed recording sites using MRI
(Fig. 5). We used a permutation test to
identify neurons with positive and/or neg-
ative NDIs that are significantly different
from 0.5 ( p � 0.05). In these neurons, re-
sponses to CSs associated with small re-

wards differ from the responses to CSs associated with either large
rewards or punishments. We found that neurons with positive
and negative NDIs that are different from 0.5 could be found in a
range of locations within the amygdala, including some locations
that were deep and some locations that were in the anterior por-
tion of the amygdala. According to published atlases of rhesus
monkey anatomy, the central nucleus is located approximately in
the dorsal 30% and the posterior 60% of the amygdala, whereas
the basal, accessory basal, and lateral nuclei comprise a large por-
tion of the remaining amygdala, including areas ventral to the
central nucleus (Paxinos et al., 2000). Although the MRI does not
permit delineation of amygdala nuclei, the reconstruction shows
that neurons with positive and negative NDIS significantly differ-
ent from 0.5 are unlikely to be restricted to the central nucleus,
which is located in the dorsal and posterior aspect of the amyg-
dala. At least some of these neurons are likely to lie within the
basolateral complex.

Figure 3. Neural responses during the fixation interval are not related to reinforcement uncertainty. A, B, Cumulative distri-
butions showing the proportion of positive (A) and negative (B) value-coding neurons as a function of the difference in firing rate
between the fixation interval and the CS or trace interval for rewarded (blue) and punished (red) trials (FP interval activity �
CS/trace interval activity). For this comparison, for each cell, we used either the firing rate from 90 –390 ms after CS onset (CS
interval) or from 390 –1800 ms after CS onset (trace interval), depending on which interval the cell encoded value for more
strongly (see Materials and Methods). Distribution means were tested for significant difference from 0 using a one-tailed t test.

Figure 4. Amygdala neurons encode the value of states initiated by CS presentation. A–D, PSTHs for four example amygdala
neurons that respond in a graded manner during the visual stimulus (A, B) or trace (C, D) intervals. Example cells 3 and 5 (A, C)
encode positive value, and cells 4 and 6 (B, D) encode negative value. In each case, responses to the CS are correlated with the value
of the associated US, consistent with the encoding state value of the neurons. E, Scatter plot of positive and negative NDIs,
computed using ROC analyses that compared activity on small reward trials with large reward trials (positive NDI) or punished
trials (negative NDI). Each data point represents a single experiment. Blue data points, positive value-coding cells; red data points,
negative value-coding cells.
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Within the context of a classical condi-
tioning procedure, the value of a state in-
duced by presenting a CS is dictated by the
value of the associated US. Therefore, the
data presented so far are consistent with
the notion that amygdala neural responses to
the FP and visual CSs encode state values.
We next examined whether this conceptual
framework can also describe responses to the
USs. Here we show that amygdala activity
during the US interval does in fact track three
different values of primary reinforcement
that can differ in sensory modality. Exami-
nation of Figure 6, A and B, reveals that the
responses to CSs associated with different
USs is correlated with response levels after
US delivery. These plots show the relation-
ship among four indices computed for each
value-coding cell: positive and negative CS
NDIs and corresponding US NDIs. The CS
NDIs were identical to those in Figure 4E,
and the US NDIs were computed in the same
manner, except calculated using activity dur-
ing a reinforcement period 50–600 ms after
US delivery. The positive NDIs are signifi-
cantly correlated (r � 0.37; p � 0.005), as are
the negative NDIs (r � 0.62; p � 0.005).
These data indicate that amygdala neurons
respond in a sustained and graded manner
across both the CS and US intervals, al-
though USs differ in sensory modality.

Thus far, we have described neural re-
sponses that are correlated with state values
induced by FPs, CSs, and USs. To what ex-
tent is this neural representation correlated with behavior? We ex-
amined the relationship between neural activity in the amygdala and
behavior by asking whether the variability in value-related encoding
by amygdala neurons was correlated with the variability in monkeys’
behavior from day to day. Overall, monkeys’ behavior indicates that
they value trials in a graded manner (Fig. 1B,C); however, in some
sessions, the licking rate on small reward trials was closer to that on
large reward trials, whereas in other sessions licking on small reward
trials was more similar to licking on punished trials. Figure 7A–F
shows plots of CS response NDIs (positive and negative, as defined
above) scattered against BDIs for both licking (A–D) and blinking
(E, F). BDIs were constructed the same way as NDIs, except that they
compare the amounts of time spent licking and blinking during the
last 500 ms of the trace epoch. A positive licking BDI �0.5, for
example, indicates that more time was spent licking before a large
reward than a small reward; a negative licking BDI �0.5 indicates
that there was more licking before a small reward than before an air
puff. For positive value-coding cells, positive CS response NDIs were
correlated with positive licking BDIs (Fig. 7A, r � 0.55, p � 0.0001).
This relationship did not hold for negative value-coding neurons
(Fig. 7B, r � 0.08, p � 0.05). Conversely, in negative value-coding
cells, negative CS response NDIs were correlated with negative lick-
ing BDIs (Fig. 7D, r�0.78, p�0.0001), and this relationship did not
apply for positive value-coding neurons (Fig. 7C, r � 0.14, p � 0.05).
Negative blinking BDIs were correlated with negative CS response
NDIs in both positive and negative value-coding neurons (Fig. 7E,
r � 0.37, p � 0.01; Fig. 7F, r � 0.52, p � 0.05). Taken as a whole, the
correlation between positive NDIs and positive BDIs was strongest
in positive value-coding cells, and the correlation between negative

NDIs and negative BDIs was strongest in negative value-coding cells.
These observations raise the intriguing possibility that positive
value-coding cells may preferentially contribute to discriminative
ability toward the more positive end of the stimulus-value spectrum,
whereas negative value-coding neurons may preferentially contrib-
ute to discriminative ability toward the more negative end of the
stimulus-value spectrum.

Discussion
We have described neural activity suggesting that primate amygdala
continuously represents the value of a monkey’s current state. We
used a classical (trace) conditioning procedure in which state transi-

Figure 5. A–C, Value encoding is widespread within the amygdala. MRI reconstruction (A–C, posterior to anterior) of record-
ing locations with sites labeled according to whether positive and negative NDIs are significantly different from 0.5. Images were
acquired with a two-dimensional inversion recovery sequence, with 2-mm-thick slices. Consequently, recording sites spanning 2
mm in the anteroposterior dimension were collapsed onto single images; therefore, in many cases, recording sites appear as if
they overlapped in the figure. Black filled circles, Non-value-encoding; open colored circles, value-encoding, one NDI significantly
different from 0.5; filled colored circles, both NDIs significantly different from 0.5; red symbols, negative value-encoding; green
symbols, positive value-encoding. Value-coding neurons were recorded from areas that likely encompass both the central and the
basolateral collection of nuclei. D, Dorsal; L, lateral; M, medial; V, ventral.

Figure 6. Amygdala neurons appear to track state values across the CS and US intervals. A, B,
Positive (A) and negative (B) US NDI plotted as a function of positive (A) and negative (B) CS NDI.
Red lines, Linear regressions fit to the data.
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tions were induced by the presentation of an FP, CSs, and USs. The
FP and CSs differed in that the FP was a familiar visual stimulus long
associated with reward, whereas the CSs were novel abstract images
having associations with rewards and punishments that were learned
within experimental sessions. USs were primary rewards and pun-
ishments that activate a combination of somatosensory, gustatory,
and auditory pathways. We found that the activity of amygdala neu-
rons is correlated with the value of states established by each of these
disparate stimuli. Neurons encoding positive value tend to increase
their firing during the fixation interval and to fire more strongly in
response to positive CSs and USs. Neurons encoding negative value
tend to have the opposite response profile, decreasing their firing
during the fixation interval and firing most strongly to negative CSs
and USs. Because neurons often fire in a congruent manner during
states initiated by FPs, CSs, and USs, we can describe these cells as

encoding the value of states. State values play a prominent role in
theories of reinforcement learning, because they are critical elements
of learning algorithms and of posited decision-making and action
control mechanisms (Sutton and Barto, 1998; Dayan and Abbott,
2001; Dayan and Balleine, 2002).

The representation of state value, evident across the popula-
tion of neurons that we have studied in the amygdala, may arise
from the convergence in the amygdala of sensory signals from
multiple modalities and inputs from neuromodulatory systems
and parts of the cerebral cortex involved in more complex,
higher-order functions (Amaral et al., 1992; McDonald, 1998;
Ghashghaei and Barbas, 2002; Stefanacci and Amaral, 2002;
Höistad and Barbas, 2008). Consistent with this, we have shown
previously that amygdala neurons, in addition to having signals
correlated with value, can represent the sensory properties of
visual stimuli and of reinforcing stimuli (Paton et al., 2006, their
Fig. 3a, Table 1). In principle, this representation of sensory stim-
uli may be transformed into a representation of value through
computational steps implemented within the amygdala, and this
may explain why some neurons, but not others, show value-
related responses to CSs but not FPs or vice versa. In addition, of
course, value-related signals could also reflect input to the amyg-
dala that already carries value-related information.

Other investigators have proposed that the amygdala may sup-
port two functions in parallel: encoding CSs with respect to the sen-
sory properties of the USs they predict (which, in rodents, is thought
to involve the basolateral amygdala) and encoding the overall moti-
vational value of events or stimuli (which is thought to involve the
central nucleus) (Balleine and Killcross, 2006). Indeed, some theo-
retical frameworks developed to explain conditioning emphasize
that, during learning, the brain can form several different associa-
tions; these include associations between the CS and the sensory
properties of the US, the CS and the unconditioned response to the
US (stimulus–response learning), or the CS and a more abstract
quantity, such as the value of the US (Dickinson, 1980; Mackintosh,
1983; Everitt et al., 2003) (but see Gallistel and Gibbon, 2000). In the
current study, the same substance, water, was used as a US in both
large reward and small reward trials. Single amygdala neurons often
discriminate between the value of CSs on these trials. Moreover, for
negative value-coding neurons, the presumed preferred US is an air
puff, but many neurons still respond differentially to CSs associated
with different magnitudes of liquid rewards. Therefore, many amyg-
dala neurons do not appear to simply report the sensory properties
of an associated preferred US. In addition, we have shown previously
that amygdala neurons do not fire in relation to the behavioral re-
sponses on this task, licking and blinking (Paton et al., 2006), so
neural activity does not appear to represent the association between
the CS and the measured behavioral responses. Consequently, we
conclude that some amygdala neurons appear to encode the value of
USs associated with CSs. In primates, at least, these neurons are
located throughout the amygdala, including the basal and accessory
basal nuclei. Many neurons in the basal and accessory basal nuclei
project to sensory and prefrontal cortices (Amaral et al., 1992, 2003;
Ghashghaei and Barbas, 2002; Ghashghaei et al., 2007; Höistad and
Barbas, 2008). Thus, the extent to which parallel processing of dif-
ferent aspects of CS–US associations occurs in discrete amygdala
nuclei in primates, rather than intermixed within nuclei, remains an
important target for future investigation.

Most previous studies investigating the representation of value in
the brain have used operant tasks, have typically investigated the
value of only one type of stimulus or action and have investigated
only one valence of reinforcement, i.e., reward (Kawagoe et al., 1998;
Platt and Glimcher, 1998; Leon and Shadlen, 1999; Tremblay and

Figure 7. Monkeys’ differential behavior is correlated with neuronal responses. A–D, Posi-
tive (A, B) and negative (C, D) BDIs based on licking responses plotted against positive (A, B) and
negative (C, D) CS discrimination indices for neurons (NDIs). Separate plots shown for positive
(A, C) and negative (B, D) value-coding neurons. E, F, Negative BDIs based on blinking data
plotted against negative CS NDIs, with separate plots shown for positive (E) and negative (F )
value-coding cells. Positive BDIs for blinking are not shown because blinking on rewarded trials
was rare. Black lines, Linear regressions fit to the data.
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Schultz, 1999; Cromwell and Schultz, 2003; McCoy et al., 2003; Dor-
ris and Glimcher, 2004; Roesch and Olson, 2004; Sugrue et al., 2004;
Samejima et al., 2005; Tobler et al., 2005; Padoa-Schioppa and Assad,
2006). Therefore, it remains unclear whether the brain areas studied,
which include the parietal, cingulate, dorsolateral prefrontal, and
orbitofrontal cortices, as well as the basal ganglia and dopamine
neurons in the midbrain, encode the ongoing value of states. In
many of these studies, specific behavioral responses were required to
obtain reinforcements that differed in reward value. Notably, even
during such operant tasks, pavlovian associations may be formed as
subjects learn to make specific adaptive responses based on sensory
stimuli. For example, in operant tasks, monkeys often make saccadic
eye movements to a visual target to indicate their choice. Because the
selection of different target stimuli may result in different types or
amounts of reinforcement, the target stimuli themselves may be
conditioned. Thus, the value of specific actions could be built in part
from computations of the value of states arising after presentation of
action targets. The current data indicate that this computation is
likely to be reflected in amygdala activity representing state value.

One outstanding question concerns whether the amygdala
represents state value across a wider range of conditions. As noted
in Introduction, the value of one’s state can be influenced by both
internal and external factors. In the current paper, we investi-
gated neural activity in relation to manipulations of external vari-
ables (the presentation of FPs, CSs, and USs), whereas internal
variables presumably remained relatively constant during the
brief recording sessions. Given the role of the amygdala in pro-
cesses resulting from changes in internal state, such as satiation
induced by reward devaluation procedures (Baxter and Murray,
2002), it will be important to determine whether and how amyg-
dala neurons track state value when it is manipulated by factors
such as more distant reward history.

A neural representation of state value in the amygdala could
subserve multiple functions. First, decisions and subsequent ac-
tions, as well as a variety of physiological, cognitive, and behav-
ioral responses that constitute what we call emotions, may in part
be based on a representation of state value. Second, state values
play a prominent role in learning algorithms, which posit that a
computation of the difference in value of two successive states
generates prediction error signals that drive learning (Schultz et
al., 1997; Sutton and Barto, 1998; Dayan and Abbott, 2001). In
principle, a representation of state value in the amygdala could
play a role in all of these processes, albeit through different ana-
tomical pathways (Amaral et al., 1992). Elucidating the specific
manner by which neural circuits involving the amygdala perform
these functions remains a critical goal for understanding how the
brain implements learning, reasoning, and feeling.
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